Strongly Minimal Sets in Continuous Logic

James Hanson

University of Wisconsin-Madison

September 15, 2019 AMS Sectional Meeting University of Wisconsin-Madison

A theory is κ -categorical if it has a unique model of cardinality κ .

Theorem (Morley)

If a countable theory is categorical in some uncountable cardinality, then it is categorical in every uncountable cardinality.

A theory is κ -categorical if it has a unique model of cardinality κ .

Theorem (Morley)

If a countable theory is categorical in some uncountable cardinality, then it is categorical in every uncountable cardinality.

Theorem (Baldwin, Lachlan)

A theory is uncountably categorical iff it is ω -stable and has no Vaughtian pairs.

A theory is κ -categorical if it has a unique model of cardinality κ .

Theorem (Morley)

If a countable theory is categorical in some uncountable cardinality, then it is categorical in every uncountable cardinality.

Theorem (Baldwin, Lachlan)

A theory is uncountably categorical iff it is $\omega\text{-stable}$ and has no Vaughtian pairs.

These ingredients give you: A set with a good dimension theory (strongly minimal, from ω -stable) that 'controls' everything (no Vaughtian pairs).

Continuous Logic

- Generalization of first-order logic for *metric structures*: Complete bounded metric spaces with uniformly continuous ℝ-valued predicates.
- Quantifiers are sup and inf. Connectives are arbitrary continuous functions $F : \mathbb{R}^k \to \mathbb{R}$ for $k \leq \omega$. (In this talk: No distinction between formula and definable predicate. More permissive but equivalent.)
- 'Zeroset' of a formula is the set of all tuples where it evaluates to 0.

Continuous Logic

- Generalization of first-order logic for *metric structures*: Complete bounded metric spaces with uniformly continuous ℝ-valued predicates.
- Quantifiers are sup and inf. Connectives are arbitrary continuous functions $F : \mathbb{R}^k \to \mathbb{R}$ for $k \leq \omega$. (In this talk: No distinction between formula and definable predicate. More permissive but equivalent.)
- 'Zeroset' of a formula is the set of all tuples where it evaluates to 0.

Definition

A *definable set* is a zeroset whose distance predicate is given by a formula.

Not every formula corresponds to a definable set!

Continuous Logic

- Generalization of first-order logic for *metric structures*: Complete bounded metric spaces with uniformly continuous ℝ-valued predicates.
- Quantifiers are sup and inf. Connectives are arbitrary continuous functions $F : \mathbb{R}^k \to \mathbb{R}$ for $k \leq \omega$. (In this talk: No distinction between formula and definable predicate. More permissive but equivalent.)
- 'Zeroset' of a formula is the set of all tuples where it evaluates to 0.

Definition

A definable set is a zeroset whose distance predicate is given by a formula.

Not every formula corresponds to a definable set!

Definition

A zeroset or type is *algebraic* if it is metrically compact in every model.

These are precisely the sets that do not grow in elementary extensions.

Theorem (Ben Yaacov; Shelah, Usvyatsov)

Morley's theorem holds in continuous logic for 'inseparably categorical' theories.

Theorem (Ben Yaacov; Shelah, Usvyatsov)

Morley's theorem holds in continuous logic for 'inseparably categorical' theories.

Better structural understanding of inseparably categorical theories?

Theorem (Ben Yaacov)

Inseparably categorical theories are ω -stable (count types with metric density character).

Theorem (Noquez)

Inseparably categorical theories have no Vaughtian pairs.

Theorem (Ben Yaacov; Shelah, Usvyatsov)

Morley's theorem holds in continuous logic for 'inseparably categorical' theories.

Better structural understanding of inseparably categorical theories?

Theorem (Ben Yaacov)

Inseparably categorical theories are $\omega\text{-stable}$ (count types with metric density character).

Theorem (Noquez)

Inseparably categorical theories have no Vaughtian pairs.

Converse?

 The theory of (the unit ball of) an infinite dimensional Hilbert space, IHS, is inseparably categorical, but...

Trouble with the classical picture

- The theory of (the unit ball of) an infinite dimensional Hilbert space, IHS, is inseparably categorical, but...
- ...does not have any strongly minimal types (see picture).

 $S_1(\mathfrak{H})$ for $\mathfrak{H} \models \mathsf{IHS}$. (Not drawn topologically.)

Trouble with the classical picture

- The theory of (the unit ball of) an infinite dimensional Hilbert space, IHS, is inseparably categorical, but...
- ...does not have any strongly minimal types (see picture).
- IHS does not even interpret a strongly minimal theory.

5 / 14

 $S_1(\mathfrak{H})$ for $\mathfrak{H} \models$ IHS. (Not drawn topologically.)

Trouble with the classical picture

- The theory of (the unit ball of) an infinite dimensional Hilbert space, IHS, is inseparably categorical, but...
- ...does not have any strongly minimal types (see picture).
- IHS does not even interpret a strongly minimal theory.
- So, let's just move the goalposts and assume we can find strongly minimal types.

 $S_1(\mathfrak{H})$ for $\mathfrak{H} \models \mathsf{IHS}$. (Not drawn topologically.)

Moving the goalposts: Inseparable categoricity in the presence of strongly minimal types

A *strongly minimal set* is a definable set with no pair of disjoint non-algebraic zerosets over any parameters.

A *strongly minimal set* is a definable set with no pair of disjoint non-algebraic zerosets over any parameters.

There are 'essentially continuous' strongly minimal theories that do not intrepret any infinite discrete structures, so we haven't just gone back to discrete logic.

A *strongly minimal set* is a definable set with no pair of disjoint non-algebraic zerosets over any parameters.

- There are 'essentially continuous' strongly minimal theories that do not intrepret any infinite discrete structures, so we haven't just gone back to discrete logic.
- Has a unique non-algebraic type over any parameters.

A *strongly minimal set* is a definable set with no pair of disjoint non-algebraic zerosets over any parameters.

- There are 'essentially continuous' strongly minimal theories that do not intrepret any infinite discrete structures, so we haven't just gone back to discrete logic.
- Has a unique non-algebraic type over any parameters.
- If p, a type over A, has a unique non-forking extension q, a type over B ⊇ A, such that q is the unique non-algebraic type in a B-definable strongly minimal set E, can we always find an A-definable strongly minimal set D such that p is the unique non-algebraic type in D? (Note you can always do this in discrete logic.)

• Over a model, yes, may use many parameters.

- Over a model, yes, may use many parameters.
- In general, not always:

 \mathfrak{A} is a disjoint union of IHS spheres of radius 2^{-n} .

 $S_1(\emptyset)$ of $\operatorname{Th}(\mathfrak{A})$ is homeomorphic to $\omega + 1$. Limiting type is strongly minimal but no \emptyset -definable set is.

- Over a model, yes, may use many parameters.
- In general, not always:

 \mathfrak{A} is a disjoint union of IHS spheres of radius 2^{-n} .

 $S_1(\emptyset)$ of $\operatorname{Th}(\mathfrak{A})$ is homeomorphic to $\omega + 1$. Limiting type is strongly minimal but no \emptyset -definable set is.

Morally speaking this is strongly minimal but with some weird behavior in "acl(Ø)" that goes away in the limit.

- Over a model, yes, may use many parameters.
- In general, not always:

 \mathfrak{A} is a disjoint union of IHS spheres of radius 2^{-n} .

 $S_1(\emptyset)$ of $\operatorname{Th}(\mathfrak{A})$ is homeomorphic to $\omega + 1$. Limiting type is strongly minimal but no \emptyset -definable set is.

- Morally speaking this is strongly minimal but with some weird behavior in "acl(Ø)" that goes away in the limit.
- Intuition can be captured with 'approximately strongly minimal pairs', but there can be strongly minimal types over Ø with no Ø-definable approximately strongly minimal pairs.

- Over a model, yes, may use many parameters.
- In general, not always:

 \mathfrak{A} is a disjoint union of IHS spheres of radius 2^{-n} .

 $S_1(\emptyset)$ of $\operatorname{Th}(\mathfrak{A})$ is homeomorphic to $\omega + 1$. Limiting type is strongly minimal but no \emptyset -definable set is.

- Morally speaking this is strongly minimal but with some weird behavior in "acl(Ø)" that goes away in the limit.
- Intuition can be captured with 'approximately strongly minimal pairs', but there can be strongly minimal types over Ø with no Ø-definable approximately strongly minimal pairs.

What's the problem?

A type space is *dictionaric* if it has a basis of definable neighborhoods. A theory is *dictionaric* if all of its type spaces are.

A type space is *dictionaric* if it has a basis of definable neighborhoods. A theory is *dictionaric* if all of its type spaces are.

Obviously every discrete theory is dictionaric.

A type space is *dictionaric* if it has a basis of definable neighborhoods. A theory is *dictionaric* if all of its type spaces are.

Obviously every discrete theory is dictionaric.

Propositions (H.)

• ω -stable theories are dictionaric.

A type space is *dictionaric* if it has a basis of definable neighborhoods. A theory is *dictionaric* if all of its type spaces are.

Obviously every discrete theory is dictionaric.

Propositions (H.)

• ω -stable theories are dictionaric.

If p ∈ S_n(A) is a strongly minimal and S_n(A) is dictionaric, then there is an A-definable approximately strongly minimal pair 'pointing to' p.

A type space is *dictionaric* if it has a basis of definable neighborhoods. A theory is *dictionaric* if all of its type spaces are.

Obviously every discrete theory is dictionaric.

Propositions (H.)

- ω -stable theories are dictionaric.
- If $p \in S_n(A)$ is a strongly minimal and $S_n(A)$ is dictionaric, then there is an A-definable approximately strongly minimal pair 'pointing to' p.
- In a dictionaric theory with no Vaughtian pairs, minimal sets are strongly minimal. (Same for approximately (strongly) minimal pairs.)

Theorem (H.)

For every $n \leq \omega$ there is an inseparably categorical theory with a \emptyset -definable strongly minimal imaginary I such that dim(I) can be anything $\leq \omega$ but $S_1(\mathfrak{A})$ has a strongly minimal type iff $\dim(I(\mathfrak{A})) \geq n$.

Theorem (H.)

For every $n \leq \omega$ there is an inseparably categorical theory with a \emptyset -definable strongly minimal imaginary I such that dim(I) can be anything $\leq \omega$ but $S_1(\mathfrak{A})$ has a strongly minimal type iff $\dim(I(\mathfrak{A})) \geq n$.

Theorem (H.)

A theory with a minimal set (resp. imaginary) over the prime model is inseparably categorical iff it is dictionaric and has no (imaginary) Vaughtian pairs.

Such a theory has $\leq \aleph_0$ separable models and if it has a \emptyset -definable approximately minimal pair then it has 1 or \aleph_0 separable models.

Theorem (H.)

For every $n \leq \omega$ there is an inseparably categorical theory with a \emptyset -definable strongly minimal imaginary I such that dim(I) can be anything $\leq \omega$ but $S_1(\mathfrak{A})$ has a strongly minimal type iff $\dim(I(\mathfrak{A})) \geq n$.

Theorem (H.)

A theory with a minimal set (resp. imaginary) over the prime model is inseparably categorical iff it is dictionaric and has no (imaginary) Vaughtian pairs.

Such a theory has $\leq \aleph_0$ separable models and if it has a \emptyset -definable approximately minimal pair then it has 1 or \aleph_0 separable models.

Which, of course, raises the question:

When can we find strongly minimal types?

Continuous logic introduces two new difficulties:

- Lack of local compactness of models.
- Lack of total disconnectedness of type spaces.

IHS has both. Can we tackle one of them at a time?

Continuous logic introduces two new difficulties:

- Lack of local compactness of models.
- Lack of total disconnectedness of type spaces.

IHS has both. Can we tackle one of them at a time?

Proposition (H.)

If T has a locally compact model, then it is inseparably categorical iff it is ω -stable and has no Vaughtian pairs. Such a theory has $\leq \aleph_0$ many separable models.

12 / 14

Totally Disconnected Type Spaces/Ultrametric Theories

Ultrametric space: $d(x, z) \le \max(d(x, y), d(y, z))$. This is a first-order property.

Totally Disconnected Type Spaces/Ultrametric Theories

Ultrametric space: $d(x, z) \le \max(d(x, y), d(y, z))$. This is a first-order property.

Proposition (H.)

A theory has totally disconnected type spaces iff it is dictionaric and has a \varnothing -definable ultrametric with scattered distance set and equivalent to the metric.

Such theories are bi-interpretable with many-sorted discrete theories.

Not all ultrametric theories are dictionaric.

Totally Disconnected Type Spaces/Ultrametric Theories

Ultrametric space: $d(x, z) \le \max(d(x, y), d(y, z))$. This is a first-order property.

Proposition (H.)

A theory has totally disconnected type spaces iff it is dictionaric and has a \varnothing -definable ultrametric with scattered distance set and equivalent to the metric.

Such theories are bi-interpretable with many-sorted discrete theories.

Not all ultrametric theories are dictionaric.

Proposition (H.)

If T is ultrametric then it is inseparably categorical iff it is ω -stable and has no imaginary Vaughtian pairs. Such a theory has 1 or \aleph_0 many separable models.

13 / 14

Can we get 'no Vaughtian pairs' rather than 'no imaginary Vaughtian pairs'?

- Can we get 'no Vaughtian pairs' rather than 'no imaginary Vaughtian pairs'?
- No.

Proposition (H.)

There is an ω -stable ultrametric theory with no Vaughtian Pairs⁺ which fails to be inseparably categorical.

Can we get 'no Vaughtian pairs' rather than 'no imaginary Vaughtian pairs'?

No.

Proposition (H.)

There is an ω -stable ultrametric theory with no Vaughtian Pairs⁺ which fails to be inseparably categorical.

A literal translation of the Baldwin-Lachlan condition fails in continuous logic.

14 / 14

Thank you

James Hanson (UW Madison) Strongly Minimal Sets in Continuous Logic

September 15, 2019 15 / 14

Why can't you define strongly minimal in terms of definable sets?

- There is a strictly superstable theory with 2^{№0} many distinct non-algebraic types over any parameter set but for which every pair of disjoint definable sets at most one is non-compact.
- D is Strongly minimal is equivalent to: D is dictionaric and for every pair of disjoint definable subsets of D at most one is non-algebraic.

An essentially continuous strongly minimal theory

 (R, +) (with the appropriate metric) has a unique non-algebraic type over every parameter set (see picture).

Proposition (H.)

 $\mathrm{Th}\left(\mathbb{R},+
ight)$ does not interpret an infinite discrete theory.

 $S_1(\mathfrak{A})$ for a typical $\mathfrak{A} \succ \mathbb{R}$.

17 / 14

 (D, φ) , with D a non-algebraic definable set and φ a formula, is an approximately strongly minimal pair if $\inf_{x \in D} \varphi(x) = 0$ and for every pair $F, G \subseteq D$ of disjoint zerosets and every $\varepsilon > 0$, at least one of $F \cap [\varphi \leq \varepsilon]$ and $G \cap [\varphi \leq \varepsilon]$ can be covered by finitely many open ε -balls in any model.

If (D, φ) is an approximately strongly minimal pair, then $D \cap [\varphi = 0]$ contains a unique non-algebraic type that is strongly minimal. We say that (D, φ) 'points to' p.

dic·tion·ar·ic

adjective Of or pertaining to a dictionary.

Bringing strongly minimal imaginaries down to the prime model?

Partial result:

Proposition (H.)

If T is an inseparably categorical theory with a discrete strongly minimal imaginary then it has a strongly minimal imaginary over the prime model.